

Biologia Molecular Aplicada

Nascida da união da genética, da bioquímica e da biologia celular, a Biologia Molecular visa compreender os fenômenos biológicos e seu relacionamento com o material genético dos organismos, o DNA e o RNA. Seus avanços impressionantes nas últimas décadas tornaram as técnicas de biologia molecular essenciais nas mais diversas aplicações para profissionais das ciências da vida.

O curso de Biologia Molecular Aplicada da PUCPR permite que os estudantes sejam capazes de aplicar as principais técnicas moleculares para detecção de doenças de cunho genético e infecto-parasitárias, genética forense, identificação molecular de organismos para fins de controle de qualidade, bioprospecção e utilização biotecnológica, bem como desenvolver aplicações inovadoras baseadas em métodos de análise de dados biológicos visando o enfrentamento de desafios atuais como a pandemia do coronavírus.

Por que fazer Biologia Molecular Aplicada na PUCPR?

A especialização em Biologia Molecular Aplicada na PUCPR se destaca pelas aplicações na análise diagnóstica, prescritiva e descritiva, sobretudo derivadas do sequenciamento e caracterização funcional do DNA. Este curso dá ênfase à biologia molecular aplicada ao diagnóstico; e à análise de dados biológicos para identificação e desenvolvimento de estratégias inovadoras de manipulação de DNA.

O curso é composto por 4 módulos (Bases Biológicas e Técnicas de Biologia Molecular; Análise de Dados Biológicos; Biologia Molecular aplicada à Microbiologia e Diagnóstico Molecular de Doenças Genéticas e Biologia Molecular Forense). Cada módulo terá 3 disciplinas (24h cada), seguido de um desafio de aplicação (12h). Público-AlvoO curso de especialização em Biologia Molecular Aplicada é destinado para profissionais formados em Biotecnologia, Biomedicina, Farmácia, Medicina, Biologia, Medicina Veterinária ou áreas afins, que possuam conhecimentos prévios em biologia celular e bioquímica, e interesse em trabalhar com biologia molecular em laboratórios de análises clínicas e ambientais ou de pesquisa.

Mercado de Atuação

^-----

As habilidades desenvolvidas ao longo do curso permitirão que os novos especialistas em Biologia Molecular Aplicada atuem na detecção e identificação de organismos através de técnicas de biologia molecular, e na análise molecular de genomas com foco no estudo de variações genéticas. Ao final do curso, os egressos serão capazes de trabalhar com análises e diagnósticos moleculares avançados em laboratórios de análises clínicas, ambientais ou de pesquisa e na aplicação ou desenvolvimento de técnicas de biologia molecular para diversos fins.

Campus:			
Curitiba			
Modalidade:			
Presencial			
Formato:			

E-mail: testeescola@pucpr.br

Telefone: 4188888888

www.pucpr.br

Presen	cial
1 100011	olai

Duracao:

18 meses

Periodicidade:

Quinzenal

Mensalidade:

R\$ 590.00

Inscricao:

Clique aqui

Disciplinas

Ética

Analisar os problemas éticos atuais, privilegiando controvérsias relacionadas às atividades profissionais. Ao final, os alunos serão capazes de tomar decisões responsáveis e sustentáveis, de acordo com princípios éticos.

Fundamentos de Biologia Molecular

Na disciplina de Fundamentos de Biologia Molecular serão abordados os seguitnes temas: definições de gene, cromossomo e genoma; dogma central da biologia molecular; arquitetura de genes e genomas eucarióticos e procarióticos; dmtações e reparo de DNA; e elementos genéticos móveis. Ao final da disciplina, o estudante terá uma compreensão plena de como é organizado o DNA e como ocorre o fluxo de informação gênica nos organismos.

Técnicas básicas de Biologia Molecular

Na disciplina de Técnicas básicas de Biologia Molecular os estudantes compreenderão e aplicarão as principais técnicas de biologia molecular para análise e manipulação de DNA, como: PCR, qPCR, RT-PCR, RAPD, eletroforese de DNA, e técnicas de hibridização. Ao final da disciplina, os estudantes serão capazes de desenhar experimentos e realizar as principais técnicas de biologia molecular.

Introdução à Genética Clínica

A disciplina Introdução à Genética Clínica engloba desde fundamentos de genética, padrões e tipos de herança, a aberrações cromossômicas e anomalias congênitas, Ao longo da disciplina serão abordados tipos e causas de aberrações cromossômicas, recombinação e ligação gênica, anomalias em autossomos e em cromossomos sexuais, doenças com herança multifatorial, erros inatos do metabolismo e malformações congênitas. Ao final da disciplina, os estudantes compreenderão as principais variações genéticas humanas patológicas e como elas são herdadas.

Desafio de Aplicação 1

A disciplina Introdução à Genética Clínica engloba desde fundamentos de genética, padrões e tipos de herança, a aberrações cromossômicas e anomalias congênitas, Ao longo da disciplina serão abordados tipos e causas de aberrações cromossômicas, recombinação e ligação gênica, anomalias em autossomos e em cromossomos sexuais, doenças com herança multifatorial, erros inatos do metabolismo e malformações congênitas. Ao final da disciplina, os estudantes compreenderão as principais variações genéticas humanas patológicas e como elas são herdadas.

Sequenciamento, montagem e anotação de genomas

A disciplina de Sequenciamento, montagem e anotação de genomas é voltada para o estudo de técnicas de sequenciamento de DNA e utilização de ferramentas de montagem e anotação de genomas. Ao longo da disciplina, os estudantes farão a montagem de um genoma bacteriano a partir de dados reais, e utilizarão ferramentas de bioinformática para identificar e estudar os diferentes elementos presentes no genoma.

Bioestatística Aplicada

Nessa disciplina os estudantes aplicam conceitos de estatística aplicada às ciências biológicas e da saúde, de forma que permita a realização e interpretação crítica dos tratamentos estatísticos utilizados em dados biológicos, bem como a utilização de programas computadorizados para este fim.

Genética de Populações

Na disciplina de Genética de Populações, os estudantes calculam os efeitos dos fatores evolutivos e da dinâmica de populações sobre as frequências de genótipos e fenótipos em diferentes populações, interpretam como a variabilidade inicial restringe a criação de nova variabilidade e analisam os mecanismos que geram e mantém a variabilidade genética. Ao final, utilizando ferramentas computacionais, os estudantes são capazes de analisar a correlação entre variações genéticas e alterações fenotípicas em estudos em larga escala.

Desafio de Aplicação 2

No segundo desafio de aplicação, os estudantes deverão analisar dados de genoma de uma população de indivíduos para verificar a frequência de alelos e fenótipos associados, e entregar um relatório completo ao final.

Virologia Molecular

Na disciplina de Virologia Molecular serão abordados os seguintes tópicos: morfologia viral; classificação de Baltimore: organização do material genético e biologia molecular; replicação, transcrição e tradução nos diferentes tipos de vírus; e as principais técnicas de análise, detecção e identificação de vírus. Ao final da disciplina, além de teram uma compreensão profunda da biologia dos diferentes vírus, os estudantes serão capazes de analisar e desenhar técnicas de identificação e detecção de vírus.

Técnicas Moleculares de detecção e identificação de microrganismos em amostras ambientais

Na disciplina de Técnicas Moleculares de detecção e identificação de microrganismos em amostras ambientais, os estudantes utilizarão as principais técnicas para análise de microrganismos do meio ambiente, como análise metagenômica, microbiômica e barcoding de DNA. Ao final da disciplina, os estudantes serão capazes de utilizar diferentes para analisar a população de microrganismos presentes em diferentes tipos de amostras ambientais.

Identificação molecular de microrganismos patogênicos

Na disciplina de Identificação molecular de microrganismos patogênicos serão abordadas as principais técnicas moleculares utilizadas para diagnosticar doenças infecto-parasitárias em humanos e animais, baseadas em análise de DNA e espectrometria de massas. Ao final da disciplina, os estudantes serão capazes analisar e desenvolver estratégias para detecção e identificação de microrganismos através da biologia molecular.

Desafio de Aplicação 3

No terceiro desafio de aplicação, os estudantes deverão desenhar um teste de diagnóstico molecular para detectar e identificar um patógeno de importância para a saúde humana ou animal. Ao final, deverão entregar um projeto de desenvolvimento de produto, incluindo todas as especificações técnicas e financeiras necessárias.

Oncologia Molecular

A disciplina de Oncologia Molecular aborda as principais técnicas moleculares para identificar fatores preditivos e prognósticos de câncer e a sua relação com farmacogenômica e medicina personalizada. Além das técnicas moleculares, é realizado o estudo de tipos e classificação de câncer, com ênfase em aspectos histopatológicos e evolutivos.

Diagnóstico de anomalias genticas hereditárias e doenças complexas

Diagnóstico de anomalias genéticas hereditárias e doenças complexas

E-mail: testeescola@pucpr.br

Telefone: 4188888888

www.pucpr.br

Biologia Molecular Forense

Na disciplina de Biologia Molecular Forense os estudantes terão contato com as principais técnicas para identificação genética a partir de diferentes fontes de material. Ao longo da disciplina, os estudantes realizarão coleta, preparação e extração de DNA a partir de diferentes tecidos, assim como aplicarão técnicas moleculares e utilizarão ferramentas computacionais e bancos de dados de DNA para identificação de indivíduos.

Desafio de Aplicação 4

No último desafio de aplicação da especialização em Biologia Molecular Aplicada, os estudantes deverão identificar um indivíduo e diagnosticar possíveis doenças, ou predisposição, a partir de informações genéticas. Ao final, deverão submeter um relatório completo, contendo as metodologias e resultados obtidos.